Yapscan User Documentation

pentestmonkey@pentestmonkey.net

22 January 2007

Contents
1 Overview
2 License

3 Installation
3.1 Quick Start
3.2 Trouble Shooting
3.3 Workaround For Missing OpenSSL Libraries

4 Features
4.1 TCP SYN Scanning
4.2 (Limited) UDP Port Scanning
4.3 ICMP Scanning Lo
4.4 Scanning Speed oL
45 Retries.o

5 Yapscan Output
5.1 Scan Information
5.2 Scan Start and End Times
53 TCP Scanning
54 ICMP Scanningo
5.4.1 Generic ICMP Fields.
5.4.2 ICMP Address Mask Fields
5.4.3 ICMP Timestamp Fields
544 ICMP Echo Fields
5.4.5 ICMP Information Fields

Limitations

6.1 Memory-hungry oo
6.2 Replies from different IPs

Why write Yet Another Port Scanner?

Credit

1 Overview

Yapscan is primarily a half-open TCP port scanner and ICMP scanner. It has
a few other uses too. These are explained more fully in the “Features” section
below.

2 License

This tool may be used for legal purposes only. Users take full responsibility
for any actions performed using this tool. The author accepts no liability for
damage caused by this tool. If these terms are not acceptable to you, then do
not use this tool.

In all other respects the GPL version 2 applies:

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

3 Installation

3.1 Quick Start

If you have a Linux system, with any luck the installation will just work. Other
systems are not supported at this time.

Firstly, go and download the latest tarball of yapscan from http://pentestmonkey.net
if you haven’t already.

su -

cd /usr/local/src

tar xfz yapscan-X.Y.tar.gz
cd yapscan-X.Y

make

make install

3.2 Trouble Shooting

Yapscan should install on most flavours of Linux. I've tried it on Gentoo using
gee v3.3.x, 3.4.x and 4.1.x (both x86 and AMDG64) and Debian “Testing” using
gce-4.1.2. T think I’ve ironed out any bugs which stop compilation. That said,
you're reading this section, so I guess something went wrong...

Any installation problems will be results of either missing header files, miss-
ing libraries or my dodgy code. Whatever the cause I'd like to make sure that
this section covers the problem (or that I fix any dodgy code). If you run into
problems and the notes below don’t help, please email me at the address on the
first page.

Yapscan depends on libpcap to capture reply packets, so firstly make sure
you’ve installed it. On Gentoo the package is called “libpcap” on Debian it’s
“libpcap-dev” (the version that includes the header files).

Linking against OpenSSL is also recommended because it speeds up scan-
ning. Installation is still possible if you can’t install OpenSSL - there’s a
workaround below. The OpenSSL package on Gentoo is called “openssl”, on
Debian it’s “openssl-dev”.

If installing these dependencies doesn’t solve your problem, mail me and I'll
try to help.

3.3 Workaround For Missing OpenSSL Libraries
Open up “Makefile” in you favourite text editor and change this bit:

OpenSSL’s MD5 library speeds up scanning. If you have openssl installed, do this:
DEFINES=-DHAVE_LIBCRYPTO ${DEBUGDEFINES}
LDLIBS=-1lpcap -lcrypto

Otherwise do this:
DEFINES=${DEBUGDEFINES}
LDLIBS=-lpcap

**

to:

OpenSSL’s MD5 library speeds up scanning. If you have openssl installed, do this:
DEFINES=-DHAVE_LIBCRYPTO ${DEBUGDEFINES}
LDLIBS=-1lpcap -lcrypto

**

Otherwise do this:
DEFINES=${DEBUGDEFINES}
LDLIBS=-1pcap

The try to compile again:

make clean
make
make install

4 Features

4.1 TCP SYN Scanning

Also known as half-open scanning.
On an internal network you probably just want to see the open ports. Here
are some example of how to specify hosts and ports:

yapscan -sS 192.168.0.1-254 -p 1-1024

yapscan -sS 10.0.0.1-10.0.255.255 -p 21,22,23,53,80,139,445,3389
yapscan -sS 172.16.0.0/16 -p 80

yapscan -sS -f targets-ips.txt -p 4444

From an external network, you might also want to see the closed ports (-¢):
yapscan -sS www.example.com -p 1-65535 -c

You can scan just the common ports (using a portlist derived from nmap):
yapscan -sS 127.0.0.1 -i lo -P common

(supported keywords are based on filenames what ship with yapscan. As of
v0.5.5-beta there is: all, known, common, database)

Note that we needed to specify the different interface to listen for replies on
(default is eth0).

Specify ports using names as well as numbers (from /etc/services):

yapscan -sS router -i ethl -p telnet,80,443,ssh,6000-6063
Or specify your own port list (1 port per line):

yapscan -sS -f mytargets.txt -P myports.txt
You can do ”-p -” like in nmap too if you want to scan 1-65535:

yapscan -sS -f mytargets.txt -p -

I've also implemented the exotic type of scans like Xmas tree, null, etc.
These aren’t particularly well tested as of v0.5.5-beta. See the help message for
more info: yapscan -h

Also see ”Scanning Speed” and ”Retries” near the end of this section. In
particular, make sure you specify a low speed for remote testing (e.g. -b 32k).

4.2 (Limited) UDP Port Scanning

This scan mode is designed to answer the question “Does host X have any closed
UDP ports?” i.e. does it reply with an ICMP Port Unreachable for probes sent
to one or more of its UDP ports.
This type of scan will (unfortunately) not tell you all the open UDP ports.
I use this mainly for scanning Firewalled hosts which I'm pretty sure won'’t
have any closed UDP ports.
Yapscan sends empty UDP packets to a range of ports at a steady (usually
quite fast) rate. It will report any ICMP port unreachable messages it receives.
If you receive no replies then you know there are no closed UDP ports.

yapscan -su router -i ethl -p 1-65535

IMPORTANT NOTE: If you receive 1 or more ICMP port unreachable
error messages, you cannot infer that these are the only close ports. Yapscan
does not back-off intelligently like nmap, so a host which limits that rate at
which it sends ICMP errors, will (falsely) appear to have less ports open.

4.3 ICMP Scanning
Yapscan can perform the following type of ICMP sweeps:
e Echo Request
e Timestamp Request
e Addressmask Request
e Information Request

You can perform 1 or more types of scan at once:

yapscan -sI 10.0.0.0/16 -t echo

yapscan -sI 10.0.0.0/16 -t echo -t addr
yapscan -sI 10.0.0.0/16 -t info

yapscan -sI 10.0.0.0/16 -t time

yapscan -sI 10.0.0.0/16 -t -

The last example will scan all supported ICMP types.
As of v0.5.5-beta yapscan is also able to send Router Solicitations, but it
won’t report replies, so this 5th type isn’t much use at present.

4.4 Scanning Speed

Yapscan scans at a steady (and configurable) speed. You can get an ETA on
you scan by pressing Enter during the scan.

As of v0.4.9-beta yapscan will never underestimate the remaining scan time,
though it can over estimate it under certain conditions.

By default yapscan scans at 1000000 Bits / Second. Unless you have a fast
link / understanding clients or both I suggest you only use the default for LAN
testing. T wouldn’t recommend going much about 2Mb/s for reliability / DoS
reasons, but you can try it if you like:

yapscan -sS -p - 192.168.0.1-14 -b 4M
WAN testing’s probably better done at a more sociable speed like 64Kb/s:
yapscan -sS -p - www.example.com -b 64k

Obviously, if the scan rate is set higher than either your upstream bandwidth or
the client’s downstream bandwidth, packets will be dropped and the reliability
of the scan reduced.

4.5 Retries

Reliability is obviously paramount during pentests, so the use of retries is en-
couraged. ICMP scans do 2 retries by default (a total of 3 tries in all). TCP
and UDP only do 1.

For an even more reliable ICMP scan you could do:

yapscan -sI -r 5 myhost -t -
A TCP scan would be made more reliable by:

yapscan -sS -r 2 myhost -p -

5 Yapscan Output

5.1 Scan Information

The first thing you see when you run yapscan is the “Scan Information” section.
This section summarises the parameters for the scan. I included this basically
so that when I looked back over my scan results I had some idea of what I'd
scanned.

Target count: 1

Interface: lo

Bandwidth limit: ... 1000000 bits/sec
Source address: 127.0.0.1

RTT: 0.950000 secs
Tries: 3

ICMP Probe Types: .. 8 (ECHO_REQUEST)

The output looks slightly different for the various scan types.

5.2 Scan Start and End Times

The start and end times are included to provide a record of when the scan was
done.

######## Scan started at 2006-10-22 20:37:26 +0000 #######H#H#

####### Scan completed at 2006-10-22 20:37:27 +0000 #########

5.3 TCP Scanning

Below is the output of a fictional TCP SYN scan run with the -c option to
show closed ports as well as open ones (so I can illustrate some fields not always
shown in the output).

.1.1:25 smtp Len=46 TTL=19 IPID=0 FLAGS=_AR_____ SEQ=0x00000000 ACK=0x4e5d5003 WIN=0 DATA="rctcpoy"
.2.2:80 http Len=46 TTL=21 IPID=0 FLAGS=_AR_____ SEQ=0x00000000 ACK=0x0b712500 WIN=0 DATA="rctcpo"
.3.3:563 domain Len=44 TTL=64 IPID=0 FLAGS=SA______ SEQ=0xd1183250 ACK=0x17£67482 WIN=32792

C SEQ=0x00000000

= e

0.
0.
0.

o O O

10.0.4.4:1999 tcp-id-port Len=40 TTL=59 IPID=43634 FLAGS=_AR
ACK=0x28£45290 WIN=0

10.0.5.5:1999 tcp-id-port Len=45 TTL=244 IPID=22340 FLAGS=_AR
ACK=0xab7e84c2 WIN=0 DATA="cisco"

SEQ=0x00000000

We’ll use the first reply to quickly cover most of the generic fields, then we’ll
look at some of the interesting ones.

Field Meaning

10.0.3.3 IP Address reply came from

25 TCP Port number reply came from

smtp Name of port (from /etc/services)

Len=46 Length of packet (IP header + TCP header +
data)

TTL=19 Time-to-Live of reply packet

IPID=0 IP ID on reply

FLAGS=_AR____ | TCP Flags: S=SYN, A=ACK, R=RST,
F=FIN, P=PSH, U=URG, E=ECN,
C=CWR

SEQ=0x00000000 | TCP Sequence number

ACK=0x4e5d5003 | TCP Acknowledgement number

WIN=0 TCP Windows size

DATA=“rctcpoy” | Data carried by TCP packet (if any)

We see that IP address 10.0.3.3 has TCP port 53 open (note the SYN and
ACK flags are set on the response). The rest of the packets indicate closed ports
(the RST flag is set).

Some of the RST packets have data attached. This is much more rare than
I’ve made it seem in this example, but it’s an interesting feaure of yapscan, so
worth some discussion.

According to http://www.sonicwall.com/support /pdfs/technotes/SonicOS_TCP_RST.pdf,
the string “rctcpo” for 10.0.2.2 seems to indicate that the host is protected by
a Sonicwall Firewall. Presumably 10.0.3.3 is similarly protected, but I haven’t
tracked down any documentation as to the exact meaning of “rctcpoy”.

The data “cisco” is return on the response from 10.0.5.5. This is a feature of
certain older version of Cisco IOS. The feature is documented as a fingerprinting
vulnerability at http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0453.

Finally, note that the packet from 10.0.4.4 has the TCP C flag set. This is
the Congestion Window Reduced flag, a relatively new TCP option.

NB: There is currently no support for displaying IP options or TCP options.

5.4 ICMP Scanning

The output below shows pretty much all of the various fields you're likely to
come across when running ICMP sweeps with yapscan:

10.0.1.1:18/0 [ADDRESS_REPLY] Len=32 TTL=56 IPID=10224 ID=10406 SEQ=13643 MASK=255.255.254.0
10.0.2.2:18/0 [ADDRESS_REPLY] Len=32 TTL=248 IPID=15111 ID=4233 SEQ=39939 MASK=255.255.255.252

10.0.3.3:14/0 [TIMESTAMP_REPLY] Len=40 TTL=249 IPID=31174 ID=2463 SEQ=52706 orig=0x040f417e

recv=0x83ecf893 xmit=0x83ecf893 std=0 end=1

10.0.4.4:14/0 [TIMESTAMP_REPLY]

recv=0x9cdclal04 xmit=0x9cdclal4 std=1 end=0 xmit-time=19:07:49.276 delta=-1.984

10.0.5.5:14/0 [TIMESTAMP_REPLY]
recv=0x04131907 xmit=0x04131907

std=1 end=1 xmit-time=18:59:20.455 delta=252.000

10.0.6.6:16/0 [INFO_REPLY] Len=28 TTL=247 IPID=48924 ID=3706 SEQ=64144
10.0.7.7:16/0 [INFO_REPLY] Len=28 TTL=243 IPID=64889 ID=10674 SEQ=17306
10.0.8.8:0/0 [ECHO_REPLY] Len=28 TTL=128 IPID=1616 ID=21821 SEQ=92

5.4.1 Generic ICMP Fields

The following fields are common to all ICMP results:

Field Meaning
10.0.1.1 IP Address reply came from
18/0 The ICMP Type of the reply was 18. The

ICMP Code was 0.

[ADDRESS_REPLY]

A human readable form for the ICMP Type.
Type 18 is Address Mask Reply

Len=32 Length of packet (IP header + ICMP header
+ data)

TTL=56 Time-to-Live of reply packet

IPID=10224 IP ID on reply

SEQ=13643 ICMP Sequence number

5.4.2 ICMP Address Mask Fields
A single field is unique to ICMP Address Mask scans:

Field

Meaning

MASK=255.255.254.0

The netmask of the corresponding IP is
255.255.254.0

Len=40 TTL=128 IPID=1617 ID=2182 SEQ=92 orig=0x041ae462

Len=40 TTL=240 IPID=10035 ID=6689 SEQ=42152 orig=0x040f40aa

5.4.3 ICMP Timestamp Fields

Yapscan will tell you if the remote system clock is accurate if the timestamp
supplied is in a standard format. It manages this even the remote system has a
broken IP stack which uses the wrong endianness for the timestamp fields.

Field Meaning

orig=0x040f417e Originator timestamp in hex

recv=0x83ecf893 Received Timestamp in hex

xmit=0x83ecf893 Transmit Timestamp in hex

std=0 Do the timestamp fileds contain the number of
milliseconds since midnight UTC as suggested
by RFC 7927

end=1 Does the endianness of the xmit field appear to

be correct (big endian AKA network byte or-
der)? Most versions of Windows use the wrong
endianness in this field.
xmit-time=19:07:49.276 | Only displayed if std=1. A human readable
representation of the xmit field. If the endi-
anness of xmit was wrong, it is reverse before
being converted to human readable format, so
Yapscan will display meaningful timestamps
even for Windows systems.

delta=-1.984 Only displayed if std=1. The number of sec-
onds ahead of UTC the remote system’s clock
is. (UTC according to your system clock).

5.4.4 ICMP Echo Fields

See Generic ICMP Fields section above. No additional fields are available for
Echo replies.

5.4.5 ICMP Information Fields

See Generic ICMP Fields section above. No additional fields are available for
Info replies.

10

6 Limitations

6.1 Memory-hungry

Yapscan implements retries by keeping a list of hosts and ports to be scanned
in memory. This has the side effect of using an awful lot of memory on large
scans: 770MB for 65535 ports on 256 hosts

This a pretty big problem. I really need to break the scan into chunks.

6.2 Replies from different IPs

If you send a packet to an address which elicits a reply from a different IP
address (e.g. you ping 192.168.0.255 and get a reply from 192.168.0.5) the reply
will not be reported by yapscan.

This is because all cookies carry a ”cookie” of some description which is
derived from the source and destination IP of the original probe. Yapscan will
inspect the reply and ensure that cookie contained within it is derived from the
source and destination IP. If an unexpected IP replies yapscan will assume that
the traffic is not a response to a probe.

7 Why write Yet Another Port Scanner?

When I started writing yapscan I wanted to:
1. Learn some C++

2. Write some generic classes that handle all the mundane parts of port
scanning (like hostlist traversal, retries, bandwidth usage).

The idea being that next time I needed to write a scanner (whether it be
ARP, IPv6, DNS server-finder, mass DoS payload deliverer, etc.) I'd be able to
quickly code up the probe, define how to parse responses and the generic classes
would take care of the rest.

Alas, my eyes were too big for my belly and I've ended up with yet another
IPv4 port scanner.

Maybe I'll achieve my original goal someday, but as of today I'm still some
way off.

That said, I do find yapscan useful during most pentests, so I thought I'd
submit it back to he community in hope that others would too.

11

8 Credit

Much inspiration (and even small amounts of code) as been drawn from other
tools. It’s only right that I pay my dues...

synscan hitp://bindshell.net/tools/synscan
The fastest half-open portscanner that I'm aware of. I borrowed the code
for determining link-layer header lengths from synscan.

nmap http://insecure.org/nmap
The most reliable portscanner I'm aware of. I use nmap during every
pentest. Most of yapscan’s options are designed to be intuitive for nmap
users.

ike-scan http://www.nta-monitor.com/tools/ike-scan

Hostlist structures and retries are heavily inspired by ike-scan.
hping2 http://www.hping.org

The output format is loosley based on hping2’s.
scanrand http://www.doxpara.com/paketto

I love the Inverse SYN Cookies idea. Very simple method to determine if
replies on the wire are meant for your scanner or some other app.

12

	Overview
	License
	Installation
	Quick Start
	Trouble Shooting
	Workaround For Missing OpenSSL Libraries

	Features
	TCP SYN Scanning
	(Limited) UDP Port Scanning
	ICMP Scanning
	Scanning Speed
	Retries

	Yapscan Output
	Scan Information
	Scan Start and End Times
	TCP Scanning
	ICMP Scanning
	Generic ICMP Fields
	ICMP Address Mask Fields
	ICMP Timestamp Fields
	ICMP Echo Fields
	ICMP Information Fields

	Limitations
	Memory-hungry
	Replies from different IPs

	Why write Yet Another Port Scanner?
	Credit

